IVALab Python Libraries
Collection of code for computer vision and robotics with specific API.
Public Member Functions | Public Attributes | List of all members
Base_state Class Reference
Inheritance diagram for Base_state:
Inheritance graph
[legend]
Collaboration diagram for Base_state:
Collaboration graph
[legend]

Public Member Functions

def __init__ (self, signal_number, state_number, signal_cache_limit=1000, state_cache_limit=1000, signal_names=[], state_names=[])
 
def get_states (self)
 
def measure (self, List cur_signals)
 
def parse (self, cur_signals)
 
def update (self, cur_signals, cur_states)
 
def visualize_state_evolving (self, fh=None)
 
- Public Member Functions inherited from Base
def __init__ (self)
 
def adapt (self)
 
def correct (self)
 
def measure (self, signal)
 
def predict (self)
 
def process (self, signal)
 

Public Attributes

 f_idx
 
 signal_cache_count
 
 signal_cache_limit
 
 signal_names
 
 signal_number
 
 signals_cache
 
 state_cache_count
 
 state_cache_limit
 
 state_names
 
 state_number
 
 states_cache
 
- Public Attributes inherited from Base
 x
 

Detailed Description

The base class for the human state estimator.

@param[in]  signal_number               how many signals will be used as input
@param[in]  state_number                how many states will be estimated

@param[in]  signal_cache_limit            How many previous signals to be stored. Default:1000
@param[in]  state_cache_limit             How many previous states to be stored. Default:1000

@param[in]  signal_names                A list of signal names. If empty then will assign signal_1, signal_2, ...
@param[in]  state_names                 A list of state names. If empty then will assign state_1, state_2, ...

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
  signal_number,
  state_number,
  signal_cache_limit = 1000,
  state_cache_limit = 1000,
  signal_names = [],
  state_names = [] 
)

Member Function Documentation

◆ get_states()

def get_states (   self)
Get the latest state.

Returns:
    latest_state (binary, (N_state, )).         The last binary states. N_states is the number of the state

◆ measure()

def measure (   self,
List  cur_signals 
)
The workflow of the signal2state 

@param[in]  cur_signals.            An array of the signals, each element of which represents the new income of different signal types

◆ parse()

def parse (   self,
  cur_signals 
)
Parse the state out of the signals. Return the states

◆ update()

def update (   self,
  cur_signals,
  cur_states 
)
Update the cache states with new ones

◆ visualize_state_evolving()

def visualize_state_evolving (   self,
  fh = None 
)
Monitor the state process by plotting a line chart using the plt.
Will only display the cached states, which is the latest state_cache_limit states

@param[in] fh                   The figure handle. Default is None. When set to None then a new figure will be created
                        Note that the fh will be stored at the first time being used, and all future drawing will be on that figure

Member Data Documentation

◆ f_idx

f_idx

◆ signal_cache_count

signal_cache_count

◆ signal_cache_limit

signal_cache_limit

◆ signal_names

signal_names

◆ signal_number

signal_number

◆ signals_cache

signals_cache

◆ state_cache_count

state_cache_count

◆ state_cache_limit

state_cache_limit

◆ state_names

state_names

◆ state_number

state_number

◆ states_cache

states_cache

The documentation for this class was generated from the following file: