IVALab Python Libraries
Collection of code for computer vision and robotics with specific API.
|
Classes | |
class | BaseSurveillanceDeploy |
class | Params |
Functions | |
None | __init__ (self, imgSource, intrinsic, scene.SceneInterpreterV1 scene_interpreter, M_WtoC, M_WtoR=M_WtoR, Params params=Params()) |
def | measure (self, rgb, dep) |
def | postprocess (self, rgb, dep) |
def | process (self, rgb, dep, puzzle_postprocess=True) |
def | publish_activity (self, char) |
def | publish_data (self) |
def | run (self) |
def | save_data (self) |
def | vis (self, rgb, dep) |
def | vis_input (self, rgb, dep) |
def | vis_near_hand_puzzles (self) |
def | vis_results (self) |
Variables | |
act_codebook | |
act_mark_cache | |
act_mark_pub | |
def | baseSurveillance = BaseSurveillanceDeploy.build(configs) |
BEV_mat | |
configs | |
depth_scale | |
fDir = os.path.dirname(os.path.realpath(__file__)) | |
hTracker | |
humanAndhumanImg | |
humanImg | |
humanMask | |
img_BEV | |
imgSource | |
intrinsic | |
M_WtoC | |
M_WtoR | |
meaBoardImg | |
meaBoardMask | |
params | |
puzzleImg | |
rate | |
robotImg | |
save_dir = os.path.dirname(fDir) | |
scene_interpreter | |
test_dep_pub | |
test_depth | |
test_rgb | |
test_rgb_pub | |
visibleMask | |
visualize | |
@ brief: The Base class for deploying the Surveillance system. It defines the default parameters, encompass the calibration process, and defines the API for further development. The test script at the end will do nothing other than performing the Surveillance system calibration run on the incoming camera signals, and retrieve the processing result for visualization @author: Yiye Chen, yychen2019@gatech.edu @date: 02/16/2022
None Surveillance.deployment.Base.__init__ | ( | self, | |
imgSource, | |||
intrinsic, | |||
scene.SceneInterpreterV1 | scene_interpreter, | ||
M_WtoC, | |||
M_WtoR = M_WtoR , |
|||
Params | params = Params() |
||
) |
@brief Constructor for BaseSurveillanceDeploy class. The Base class for deploying the Surveillance system. It defines the default parameters, encompasses the calibration process, and defines the API for further development. @param[in] imgSource (callable) image source stream(s). @param[in] intrinsic camera intrinsic parameters. @param[in] scene_interp Scene interpreter instance. @param[in] M_WtoC (optional) world to camera extrinsic. @param[in] M_WtoR (optional) world to robot. @param[in] params (optional) parameters structure. Regarding the arguments, imgSource (Callable): The image source(s) that can get the camera data in the following style (where status is a binary indicating whether the camera data is fetched successfully): > rgb, dep, status = imgSource() Can pass None, which will disable the run API that deploy the system on the connected camera. The parameter instance params default to Params() if not provided.
def Surveillance.deployment.Base.measure | ( | self, | |
rgb, | |||
dep | |||
) |
get the measure board return the measure board mask and the measure board img
def Surveillance.deployment.Base.postprocess | ( | self, | |
rgb, | |||
dep | |||
) |
Overwrite to put any pose process that is built on top of the scene interpreter her Args: rgb (_type_): _description_ dep (_type_): _description_
def Surveillance.deployment.Base.process | ( | self, | |
rgb, | |||
dep, | |||
puzzle_postprocess = True |
|||
) |
def Surveillance.deployment.Base.publish_activity | ( | self, | |
char | |||
) |
def Surveillance.deployment.Base.publish_data | ( | self | ) |
def Surveillance.deployment.Base.run | ( | self | ) |
def Surveillance.deployment.Base.save_data | ( | self | ) |
def Surveillance.deployment.Base.vis | ( | self, | |
rgb, | |||
dep | |||
) |
def Surveillance.deployment.Base.vis_input | ( | self, | |
rgb, | |||
dep | |||
) |
@brief Visualize the input. Args: rgb: The rgb image. dep: The depth image.
def Surveillance.deployment.Base.vis_near_hand_puzzles | ( | self | ) |
@ brief Visualize the puzzle pices location near the hand.
def Surveillance.deployment.Base.vis_results | ( | self | ) |
Overwrite to put any result-related visualization in this function. Note: Maybe it is better to put the visualization function here.
act_codebook |
act_mark_cache |
act_mark_pub |
def baseSurveillance = BaseSurveillanceDeploy.build(configs) |
BEV_mat |
configs |
depth_scale |
fDir = os.path.dirname(os.path.realpath(__file__)) |
hTracker |
humanAndhumanImg |
humanImg |
humanMask |
img_BEV |
imgSource |
intrinsic |
M_WtoC |
M_WtoR |
meaBoardImg |
meaBoardMask |
params |
puzzleImg |
rate |
robotImg |
save_dir = os.path.dirname(fDir) |
scene_interpreter |
test_dep_pub |
test_depth |
test_rgb |
test_rgb_pub |
visibleMask |
visualize |