|
IVALab Python Libraries
Collection of code for computer vision and robotics with specific API.
|
Classes | |
| class | copyAttributes |
Functions | |
| def | agglomerativeclustering_id_2d (dict_id_2d, cluster_num) |
| def | calculateMatches (des1, des2, ratio_threshold=0.7) |
| Calculate the matches based on KNN. More... | |
| def | checkKey (dict1, dict2, value) |
| def | closestNumber (num, basis=50, lower=True) |
| def | convert_dict2ROS (info_dict) |
| def | convert_ROS2dict (message) |
| def | convert_serializable (input) |
| def | kmeans_id_2d (dict_id_2d, kmeans_num) |
| def | partition_even (data_list, partition_num, order="ascend") |
| def | updateLabel (x_list, x_label) |
| Update the label according to the ranking of all the elements' (with the same label) mean value. More... | |
Variables | |
| dictionary | dict_id_2d = {0: [0, 0], 1: [1, 1], 2: [0.4, 0.4], 3: [3, 3], 4: [4, 4], 5: [5, 5], 6: [0.6, 0.6], 7: [7, 7], 8: [8, 8], 9: [0.9, 0.9]} |
| def puzzle.utils.dataProcessing.agglomerativeclustering_id_2d | ( | dict_id_2d, | |
| cluster_num | |||
| ) |
@brief Agglomerative clustering for a dict of id: 2D data.
Args:
dict_id_2d: The dictionary of id: 2D data.
Returns:
dict_id_label: The updated dictionary of 2D data.
| def puzzle.utils.dataProcessing.calculateMatches | ( | des1, | |
| des2, | |||
ratio_threshold = 0.7 |
|||
| ) |
Calculate the matches based on KNN.
For premise behind this approach, see https://github.com/adumrewal/SIFTImageSimilarity/blob/master/SIFTSimilarityInteractive.ipynb
| [in] | des1 | First descriptor. |
| [in] | des2 | Second descriptor. |
| [in] | topResults | Final matches. |
| def puzzle.utils.dataProcessing.checkKey | ( | dict1, | |
| dict2, | |||
| value | |||
| ) |
@brief Check the key & value pairs between two dicts given a query value.
Args:
dict1: Query dict 1.
dict2: Query dict 2.
value: Query value.
Returns:
Whether the keys found are the same.
| def puzzle.utils.dataProcessing.closestNumber | ( | num, | |
basis = 50, |
|||
lower = True |
|||
| ) |
@brief Get the closest number to the basis target for the input number.
e.g., 580 with 50 -> 550
Args:
num: The input number.
basis: The basis target number.
lower: The direction.
Returns:
The integer of the closest number.
| def puzzle.utils.dataProcessing.convert_dict2ROS | ( | info_dict | ) |
@brief Convert the dict to ROS string. See https://github.com/uos/rospy_message_converter
Args:
info_dict: the input dict.
Returns:
json_str: the ROS string.
| def puzzle.utils.dataProcessing.convert_ROS2dict | ( | message | ) |
@brief Convert the ROS string to dict.
Args:
message: the input ROS string.
Returns:
info_dict: the obtained dict.
| def puzzle.utils.dataProcessing.convert_serializable | ( | input | ) |
@brief Convert the object to a serializable object.
Args:
input: the input object.
Returns:
The serializable object.
| def puzzle.utils.dataProcessing.kmeans_id_2d | ( | dict_id_2d, | |
| kmeans_num | |||
| ) |
@brief Kmeans clustering for a dict of id: 2D data.
Args:
dict_id_2d: The dictionary of id: 2D data.
kmeans_num: The number of clusters.
Returns:
dict_id_label: The updated dictionary of 2D data.
| def puzzle.utils.dataProcessing.partition_even | ( | data_list, | |
| partition_num, | |||
order = "ascend" |
|||
| ) |
Partition a list of numbers evenly into a number of sets based on their values
e.g. data = [4, 11, 14, 3, 32, 35], partition_number = 3, order=ascend.
result: labels = [0, 1, 1, 0, 2, 2]
Args:
data_list ((N, )): The list of data
partition_num (int): The partition numebr
order (str): ascend or descend. THe partition is based on increase order or decrease order
(i.e. The numbers in the first set is the lowest or the highest)
Returns:
labels ((N, 1)): The partition label
part_results ((partition_num, N/partition_num)): The partition results
| def puzzle.utils.dataProcessing.updateLabel | ( | x_list, | |
| x_label | |||
| ) |
Update the label according to the ranking of all the elements' (with the same label) mean value.
E.g., x_list = [28,137,263,269,33,151] / x_label = [2,3,1,1,2,3] -> x_label_updated = [0,1,2,2,0,1]
| [in] | x_list | Value list. |
| [in] | x_label | Original label. |
| [out] | x_label_updated | The updated label. |
| dictionary dict_id_2d = {0: [0, 0], 1: [1, 1], 2: [0.4, 0.4], 3: [3, 3], 4: [4, 4], 5: [5, 5], 6: [0.6, 0.6], 7: [7, 7], 8: [8, 8], 9: [0.9, 0.9]} |