IVALab Python Libraries
Collection of code for computer vision and robotics with specific API.
|
Classes | |
class | copyAttributes |
Functions | |
def | agglomerativeclustering_id_2d (dict_id_2d, cluster_num) |
def | calculateMatches (des1, des2, ratio_threshold=0.7) |
Calculate the matches based on KNN. More... | |
def | checkKey (dict1, dict2, value) |
def | closestNumber (num, basis=50, lower=True) |
def | convert_dict2ROS (info_dict) |
def | convert_ROS2dict (message) |
def | convert_serializable (input) |
def | kmeans_id_2d (dict_id_2d, kmeans_num) |
def | partition_even (data_list, partition_num, order="ascend") |
def | updateLabel (x_list, x_label) |
Update the label according to the ranking of all the elements' (with the same label) mean value. More... | |
Variables | |
dictionary | dict_id_2d = {0: [0, 0], 1: [1, 1], 2: [0.4, 0.4], 3: [3, 3], 4: [4, 4], 5: [5, 5], 6: [0.6, 0.6], 7: [7, 7], 8: [8, 8], 9: [0.9, 0.9]} |
def puzzle.utils.dataProcessing.agglomerativeclustering_id_2d | ( | dict_id_2d, | |
cluster_num | |||
) |
@brief Agglomerative clustering for a dict of id: 2D data. Args: dict_id_2d: The dictionary of id: 2D data. Returns: dict_id_label: The updated dictionary of 2D data.
def puzzle.utils.dataProcessing.calculateMatches | ( | des1, | |
des2, | |||
ratio_threshold = 0.7 |
|||
) |
Calculate the matches based on KNN.
For premise behind this approach, see https://github.com/adumrewal/SIFTImageSimilarity/blob/master/SIFTSimilarityInteractive.ipynb
[in] | des1 | First descriptor. |
[in] | des2 | Second descriptor. |
[in] | topResults | Final matches. |
def puzzle.utils.dataProcessing.checkKey | ( | dict1, | |
dict2, | |||
value | |||
) |
@brief Check the key & value pairs between two dicts given a query value. Args: dict1: Query dict 1. dict2: Query dict 2. value: Query value. Returns: Whether the keys found are the same.
def puzzle.utils.dataProcessing.closestNumber | ( | num, | |
basis = 50 , |
|||
lower = True |
|||
) |
@brief Get the closest number to the basis target for the input number. e.g., 580 with 50 -> 550 Args: num: The input number. basis: The basis target number. lower: The direction. Returns: The integer of the closest number.
def puzzle.utils.dataProcessing.convert_dict2ROS | ( | info_dict | ) |
@brief Convert the dict to ROS string. See https://github.com/uos/rospy_message_converter Args: info_dict: the input dict. Returns: json_str: the ROS string.
def puzzle.utils.dataProcessing.convert_ROS2dict | ( | message | ) |
@brief Convert the ROS string to dict. Args: message: the input ROS string. Returns: info_dict: the obtained dict.
def puzzle.utils.dataProcessing.convert_serializable | ( | input | ) |
@brief Convert the object to a serializable object. Args: input: the input object. Returns: The serializable object.
def puzzle.utils.dataProcessing.kmeans_id_2d | ( | dict_id_2d, | |
kmeans_num | |||
) |
@brief Kmeans clustering for a dict of id: 2D data. Args: dict_id_2d: The dictionary of id: 2D data. kmeans_num: The number of clusters. Returns: dict_id_label: The updated dictionary of 2D data.
def puzzle.utils.dataProcessing.partition_even | ( | data_list, | |
partition_num, | |||
order = "ascend" |
|||
) |
Partition a list of numbers evenly into a number of sets based on their values e.g. data = [4, 11, 14, 3, 32, 35], partition_number = 3, order=ascend. result: labels = [0, 1, 1, 0, 2, 2] Args: data_list ((N, )): The list of data partition_num (int): The partition numebr order (str): ascend or descend. THe partition is based on increase order or decrease order (i.e. The numbers in the first set is the lowest or the highest) Returns: labels ((N, 1)): The partition label part_results ((partition_num, N/partition_num)): The partition results
def puzzle.utils.dataProcessing.updateLabel | ( | x_list, | |
x_label | |||
) |
Update the label according to the ranking of all the elements' (with the same label) mean value.
E.g., x_list = [28,137,263,269,33,151] / x_label = [2,3,1,1,2,3] -> x_label_updated = [0,1,2,2,0,1]
[in] | x_list | Value list. |
[in] | x_label | Original label. |
[out] | x_label_updated | The updated label. |
dictionary dict_id_2d = {0: [0, 0], 1: [1, 1], 2: [0.4, 0.4], 3: [3, 3], 4: [4, 4], 5: [5, 5], 6: [0.6, 0.6], 7: [7, 7], 8: [8, 8], 9: [0.9, 0.9]} |